
1

Introduction

Classes and Subclasses

Or Extending a Class

2

Inheritance: Introduction

 Reusability--building new components by
utilising existing components- is yet another
important aspect of OO paradigm.

 It is always good/“productive” if we are able to
reuse something that is already exists rather
than creating the same all over again.

 This is achieve by creating new classes, reusing
the properties of existing classes.

3

Inheritance: Introduction

 This mechanism of
deriving a new class
from existing/old class is
called “inheritance”.

 The old class is known as
“base” class, “super”
class or “parent” class”;
and the new class is
known as “sub” class,
“derived” class, or “child”
class.

Parent

Child

Inherited
capability

4

Inheritance: Introduction

 The inheritance allows subclasses to inherit all
properties (variables and methods) of their
parent classes. The different forms of
inheritance are:
 Single inheritance (only one super class)

 Multiple inheritance (several super classes)

 Hierarchical inheritance (one super class, many sub
classes)

 Multi-Level inheritance (derived from a derived
class)

 Hybrid inheritance (more than two types)

 Multi-path inheritance (inheritance of some
properties from two sources).

5

Forms of Inheritance

A

B

(a) Single Inheritance

A

C

(b) Multiple Inheritance

B A

C

(c) Hierarchical Inheritance

B D

A

C

(a) Multi-Level Inheritance

B
B

D

(b) Hybrid Inheritance

c

A

B

D

(b) Multipath Inheritance

c

A

6

Defining a Sub class

 A subclass/child class is defined as follows:

 The keyword “extends” signifies that the properties of
super class are extended to the subclass. That means,
subclass contains its own members as well of those of
the super class. This kind of situation occurs when we
want to enhance properties of existing class without
actually modifying it.

class SubClassName extends SuperClassName
{

 fields declaration;
 methods declaration;

 }

7

Subclasses and Inheritance

 Circle class captures basic properties

 For drawing application, need a circle to
draw itself on the screen, GraphicCircle...

 This can be realised either by updating the
circle class itself (which is not a good
Software Engineering method) or creating a
new class that builds on the existing class
and add additional properties.

8

Without Inheritance

 Not very elegant

public class GraphicCircle {

 public Circle c; // keep a copy of a circle

 public double area() { return c.area(); }

 public double circumference (){ return c.circumference(); }

 // new instance variables, methods for this class

 public Color outline, fill;

 public void draw(DrawWindow dw) { /* drawing code here */ }

}

9

Subclasses and Inheritance

 Circle class captures basic properties

 For drawing application need a circle to
draw itself on the screen, GraphicCircle

 Java/OOP allows for Circle class code to be
implicitly (re)used in defining a GraphicCircle

 GraphicCircle becomes a subclass of Circle,
extending its capabilities

10

Circle

x,y,r : double

area () : double

circumference(): double

GraphicCircle

outline, fill : Color

 draw (DrawWindow) : void

Superclass

base class,

Or parent

class

Subclass,

Derived

class, or

Child class

Subclassing Circle

11

Subclassing

 Subclasses created by the keyword
extends:

 Each GraphicCircle object is also a Circle!

public class GraphicCircle extends Circle {

 // automatically inherit all the variables and methods

 // of Circle, so only need to put in the ‘new stuff’

 Color outline, fill;

 public void draw(DrawWindow dw) {

 dw.drawCircle(x,y,r,outline,fill);

 }

}

12

Final Classes

 Declaring class with final modifier
prevents it being extended or subclassed.

 Allows compiler to optimize the invoking
of methods of the class

 final class Cirlce{

 …………

 }

13

Subclasses & Constructors

 Default constructor automatically calls
constructor of the base class:

GraphicCircle drawableCircle = new GraphicCircle();

default constructor

for Circle class is

called

14

Subclasses & Constructors

 Defined constructor can invoke base class constructor
with super:

public GraphicCircle(double x, double y, double r,

Color outline, Color fill) {

 super(x, y, r);

 this.outline = outline;

 this fill = fill

}

15

Shadowed Variables

 Subclasses defining variables with the
same name as those in the superclass,
shadow them:

16

Shadowed Variables - Example

public class Circle {
 public float r = 100;
}

public class GraphicCircle extends Circle {
 public float r = 10; // New variable, resolution in dots per inch
}

public class CircleTest {
 public static void main(String[] args){
 GraphicCircle gc = new GraphicCircle();
 Circle c = gc;
 System.out.println(“ GraphicCircleRadius= “ + gc.r); // 10
 System.out.println (“ Circle Radius = “ + c.r); // 100
 }
}

17

Overriding Methods

 Derived/sub classes defining methods
with same name, return type and
arguments as those in the parent/super
class, override their parents methods:

18

Overriding Methods

class A {
 int j = 1;
 int f() { return j; }
}

class B extends A {
 int j = 2;
 int f() {
 return j; }
}

19

Overriding Methods

class override_test {
 public static void main(String args[]) {
 B b = new B();
 System.out.println(b.j); // refers to B.j prints 2
 System.out.println(b.f()); // refers to B.f prints 2

 A a = (A) b;
 System.out.println(a.j); // now refers to a.j prints 1
 System.out.println(a.f()); // overridden method still refers to B.f() prints 2 !
 }
 }

Object Type Casting

[raj@mundroo] inheritance [1:167] java override_test
2
2
1
2

20

Using All in One: Person and Student

Person

name: String

sex: char

age: int

Display () : void

Student

RollNo: int

Branch: String

Display() : void

Superclass

class

Subclass

class.

21

Person class: Parent class

// Student.java: Student inheriting properties of person class
class person
{
 private String name;
 protected char sex; // note protected
 public int age;
 person()
 {
 name = null;
 sex = 'U'; // unknown
 age = 0;
 }
 person(String name, char sex, int age)
 {
 this.name = name;
 this.sex = sex;
 this.age = age;
 }
 String getName()
 {
 return name;
 }
 void Display()
 {
 System.out.println("Name = "+name);
 System.out.println("Sex = "+sex);
 System.out.println("Age = "+age);

 }
}

22

Student class: Derived class

class student extends person
{
 private int RollNo;
 String branch;
 student(String name, char sex, int age, int RollNo, String branch)
 {
 super(name, sex, age); // calls parent class's constructor with 3 arguments
 this.RollNo = RollNo;
 this.branch = branch;
 }
 void Display() // Method Overriding
 {
 System.out.println("Roll No = "+RollNo);
 System.out.println("Name = "+getName());
 System.out.println("Sex = "+sex);
 System.out.println("Age = "+age);
 System.out.println("Branch = "+branch);
 }
 void TestMethod() // test what is valid to access
 {
 // name = "Mark"; Error: name is private
 sex = 'M';
 RollNo = 20;
 }
}

What happens if super class constructor is not explicitly invoked ?
(default constructor will be invoked).

23

Driver Class

class MyTest
{
 public static void main(String args[])
 {
 student s1 = new student("Rama", 'M', 21, 1, "Computer Science");
 student s2 = new student("Sita", 'F', 19, 2, "Software Engineering");

 System.out.println("Student 1 Details...");
 s1.Display();
 System.out.println("Student 2 Details...");
 s2.Display();

 person p1 = new person("Rao", 'M', 45);
 System.out.println("Person Details...");
 p1.Display();

 }
}

Can we create Object of person class ?

24

Output

[raj@mundroo] inheritance [1:154] java MyTest
Student 1 Details...
Roll No = 1
Name = Rama
Sex = M
Age = 21
Branch = Computer Science
Student 2 Details...
Roll No = 2
Name = Sita
Sex = F
Age = 19
Branch = Software Engineering
Person Details...
Name = Rao
Sex = M
Age = 45
[raj@mundroo] inheritance [1:155]

25

Summary

 Inheritance promotes reusability by supporting
the creation of new classes from existing
classes.

 Various forms of inheritance can be realised in
Java.

 Child class constructor can be directed to
invoke selected constructor from parent using
super keyword.

 Variables and Methods from parent classes can
be overridden by redefining them in derived
classes.

 New Keywords: extends, super, final

Assignment

 Explain different type of inheritance.

 What is derived class.

26

